Math 1B Discussion Problems 26 Feb

1. Find a formula for the general term a_{n} for each of the following sequences.
(a) $3,2,1,0,-1, \ldots$
(b) $1,-4,9,-16,25,-36, \ldots$
(c) $\frac{1}{9}, \frac{2}{12}, \frac{4}{15}, \frac{8}{18}, \frac{16}{21}, \ldots$
2. Determine whether each of the following sequences converges or diverges. If the sequence converges find its limit.
(a) $a_{n}=2+(0.1)^{n}$
(b) $a_{n}=n \cos (n \pi)$
(c) $a_{n}=\frac{\sin ^{2} n}{2^{n}}$
(d) $a_{n}=\sqrt[n]{n}$
(e) $a_{n}=\frac{n!}{n^{n}}$
(f) $a_{n}=\frac{n!}{3^{n}}$
(g) $a_{1}=1, a_{n+1}=3-a_{n}$
(h) $a_{1}=1, a_{n+1}=\frac{1}{3-a_{n}}$ (Hint: Show that this sequence is decreasing and bounded below)
3. ${ }^{*}$ The Fibonacci sequence is defined by $a_{1}=a_{2}=1, a_{n+2}=a_{n+1}+a_{n}$. Let $b_{n}=\frac{a_{n+1}}{a_{n}}$.

$$
a_{n}: 1,1,2,3,5,8,13,21, \ldots, b_{n}: \frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \ldots
$$

Show that b_{n} converges to the 'golden ratio' $\frac{1+\sqrt{5}}{2}$.
(Hint: Show that the odd terms $b_{2 n+1}$ are increasing and bounded above, while the even terms $b_{2 n}$ are decreasing and bounded below)

